Sudden Cardiac Death in Anabolic-Androgenic Steroid Users : A Literature Review / Marco Torrisi, Giuliana Pennisi, Ilenia Russo, Francesco Amico, Massimiliano Esposito, Aldo Liberto, Giuseppe Cocimano, Monica Salerno, Giuseppe Li Rosi, Nunzio Di Nunno, Angelo Montana. - (Medicina 56 (2020) 11 (4 November); p. 1-19)
- PMID: 33158202
- PMCID: PMC7694262
- DOI: 10.3390/medicina56110587
Abstract
Background and objectives: Anabolic-androgenic steroids (AASs) are a group of synthetic molecules derived from testosterone and its related precursors. AASs are widely used illicitly by adolescents and athletes, especially by bodybuilders, both for aesthetic uses and as performance enhancers to increase muscle growth and lean body mass. When used illicitly they can damage health and cause disorders affecting several functions. Sudden cardiac death (SCD) is the most common medical cause of death in athletes. SCD in athletes has also been associated with the use of performance-enhancing drugs. This review aimed to focus on deaths related to AAS abuse to investigate the cardiac pathophysiological mechanism that underlies this type of death, which still needs to be fully investigated. Materials and Methods: This review was conducted using PubMed Central and Google Scholar databases, until 21 July 2020, using the following key terms: "((Sudden cardiac death) OR (Sudden death)) AND ((androgenic anabolic steroid) OR (androgenic anabolic steroids) OR (anabolic-androgenic steroids) OR (anabolic-androgenic steroid))". Thirteen articles met the inclusion and exclusion criteria, for a total of 33 reported cases. Results: Of the 33 cases, 31 (93.9%) were males while only 2 (61%) were females. Mean age was 29.79 and, among sportsmen, the most represented sports activity was bodybuilding. In all cases there was a history of AAS abuse or a physical phenotype suggesting AAS use; the total usage period was unspecified in most cases. In 24 cases the results of the toxicological analysis were reported. The most detected AASs were nandrolone, testosterone, and stanozolol. The most frequently reported macroscopic alterations were cardiomegaly and left ventricular hypertrophy, while the histological alterations were foci of fibrosis and necrosis of the myocardial tissue. Conclusions: Four principal mechanisms responsible for SCD have been proposed in AAS abusers: the atherogenic model, the thrombosis model, the model of vasospasm induced by the release of nitric oxide, and the direct myocardial injury model. Hypertrophy, fibrosis, and necrosis represent a substrate for arrhythmias, especially when combined with exercise. Indeed, AAS use has been shown to change physiological cardiac remodeling of athletes to pathophysiological cardiac hypertrophy with an increased risk of life-threatening arrhythmias.