Measurement of urinary cobalt as its complex with 2-(5-chloro-2-pyridylazo)-5-diethylaminophenol by liquid chromatography-tandem mass spectrometry for the purpose of anti-doping control

Measurement of urinary cobalt as its complex with 2-(5-chloro-2-pyridylazo)-5-diethylaminophenol by liquid chromatography-tandem mass spectrometry for the purpose of anti-doping control / Tim Sobolevsky, Brian Ahrens. - (Drug Testing and Analysis (2021) 22 January)

  • PMID: 33484083
  • DOI: 10.1002/dta.3004


Abstract

Cobalt is well known for its ability to stimulate erythropoiesis via stabilization of hypoxia-inducible factors. In sports, this can provide a competitive benefit to athletes, so the World Anti-Doping Agency prohibits the use of cobalt in any form except its cobalamin vitamers. As of now, cobalt in biological fluids is detected by inductively coupled plasma mass spectrometry (ICP-MS), a technique which has very limited availability in anti-doping laboratories. Therefore, a quantitative method based on liquid chromatography-tandem mass spectrometry capable of measuring urinary cobalt in the form of its complex with 2-(5-chloro-2-pyridylazo)-5-diethylaminophenol (5-Cl-PADAP) has been developed and validated. A cobalt complex with deuterium-labeled 5-Cl-PADAP was used as internal standard. The method was found linear over the concentration range of 5-500 ng/ml with a combined standard uncertainty less than 10% at 15, 200, and 450 ng/ml. Stability of cobalt ions in urine was investigated over the course of 2 months; the concentration of free Co2+ was observed to decline by approximately 50% but restored upon hydrolysis with hydrochloric acid. Unlike ICP-MS, this method is practically unaffected by the presence of cyanocobalamin as the latter is resistant to acid hydrolysis. Notwithstanding the lack of formalized threshold concentration of cobalt in urine, it is highly desirable that more anti-doping laboratories engage in testing for cobalt levels to better understand the prevalence of cobalt misuse in athletes. Given that cobalt salts are inexpensive and easily obtainable, the risk of such abuse should not be underestimated.

Parameters

Science
Research / Study
Date
22 January 2021
People
Ahrens, Brian
Sobolevsky, Tim
Country
United States of America
Language
English
Other organisations
University of California, Los Angeles (UCLA)
Laboratories
Los Angeles, USA: UCLA Olympic Analytical Laboratory
Analytical aspects
Mass spectrometry analysis
Testing method development
Doping classes
S2. Peptide Hormones, Growth Factors
Substances
Cobalt
Document category
Abstract
Date generated
18 March 2021
Date of last modification
20 March 2021
Category
  • Legal Source
  • Education
  • Science
  • Statistics
  • History
Country & language
  • Country
  • Language
Other filters
  • ADRV
  • Legal Terms
  • Sport/IFs
  • Other organisations
  • Laboratories
  • Analytical aspects
  • Doping classes
  • Substances
  • Medical terms
  • Various
  • Version
  • Document category
  • Document type
Publication period
Origin