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ABSTRACT
In the fight against doping, steroid profiling is a powerful
tool to detect drug misuse with endogenous anabolic
androgenic steroids. To establish sensitive and reliable
models, the factors influencing profiling should be
recognised. We performed an extensive literature review
of the multiple factors that could influence the
quantitative levels and ratios of endogenous steroids in
urine matrix. For a comprehensive and scientific
evaluation of the urinary steroid profile, it is necessary to
define the target analytes as well as testosterone
metabolism. The two main confounding factors, that is,
endogenous and exogenous factors, are detailed to show
the complex process of quantifying the steroid profile
within WADA-accredited laboratories. Technical aspects
are also discussed as they could have a significant impact
on the steroid profile, and thus the steroid module of the
athlete biological passport (ABP). The different factors
impacting the major components of the steroid profile
must be understood to ensure scientifically sound
interpretation through the Bayesian model of the ABP.
Not only should the statistical data be considered but also
the experts in the field must be consulted for successful
implementation of the steroidal module.

INTRODUCTION
Since the advent of the fight against doping in
sports in the 1970s, detection of the prohibited
substances has seen many improvements. Targeted
analyses using technologies such as gas chromatog-
raphy coupled to mass spectrometry (GC-MS) have
been the golden standard for many years.1–4 Liquid
chromatography coupled to MS (LC-MS) allowed
for much easier and straightforward sample prepar-
ation and shortened the turnaround time to com-
plete the analyses.5 Constant development in the
MS instrumentation has enabled a continuous
increase of performance in terms of sensitivity as
well as specificity.6

Whereas exogenous substances can be identified
by qualitative analysis of appropriate target com-
pounds, the situation is more complex in case of
endogenous performance-enhancing substances,
such as testosterone (T), which are not only avail-
able as pharmaceutical products, but are also pro-
duced by human body.7 In these situations, the
World Anti-Doping Agency (WADA)-accredited
laboratories should be capable of distinguishing
between the doping use and clinical/pathological
conditions to protect the integrity of clean sport by
efficient control, and also to guarantee the fair pro-
cesses of each individual athlete.
Anabolic steroids are mainly excreted through

the urinary route, requiring modifications of their
hydrophobic chemical structures. Phase I and phase

II metabolic reactions are responsible for, respect-
ively, functionalisation and addition of conjugates
(ie, glucuronides or sulfates)8–11 to steroids,
thereby increasing their hydrophilicity and allowing
their dissolution and elimination in urine mixture.
Since steroid conjugates analysis is not compatible
with GC-MS, the only analytical technique recog-
nised by WADA for endogenous steroids quantifica-
tion in urine,12 deconjugation of the conjugated
moiety by enzymatic hydrolysis (β-glucuronidase) is
a crucial step during sample preparation and prior
to GC-MS measurement.13 14

Steroid profile consists of the quantification of
several glucuroconjugated and free urinary com-
pounds linked to T and its metabolism (figure 1),
and is well known as a potent tool to uncover
doping with endogenous anabolic steroids.13 15–18

However, due to a wide interindividual variability in
absolute endogenous steroid concentrations origin-
ating from various factors, it has been proven that
population-based reference values, which were con-
sidered for years by every protagonist in the fight
against doping, are not always sensitive enough to
reveal the potential misuse of anabolic androgenic
steroids at an individual level.19 For these reasons,
there is an obvious need of individual monitoring of
the steroid profile to allow a fair evaluation.
The in-competition and out-of-competition

testing programmes are the best strategies to screen
and confirm adverse analytical findings of exogen-
ous and endogenous steroids. From the basis of
these routine analyses, the WADA-accredited
laboratories provide harmonised and robust analyt-
ical data for steroid profile. Recently, a new tech-
nical document TD2014EAAS12 has been edited to
ensure this harmonisation and is in force from
January 2014. A detailed description of selected
aspects of TD2014EAAS is given later in this
review. The application of these rules should enable
a suitable application of steroid module of the
athlete biological passport (ABP) and the assess-
ment of steroid profile using the adaptive model.
Before the steroidal module, ABP has been devel-

oped using a Bayesian approach to deter blood
doping based on haematological data obtained in
whole blood sample.20 21 The haematological module
of the ABP has been implemented in 2008 by certain
international sport federations and since then this
indirect methodology has resulted in sanctioning of
numerous athletes for anti-doping rule violation. This
achievement stimulated the expansion of the ABP to
establish the intraindividual reference ranges to
monitor the steroid profile of an athlete22 (figure 2).
Historically, anti-doping laboratories and sport
authorities detect misuse of endogenous steroids
based on the ratio between T and its 17α-epimer,
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epitestosterone (E; T/E ratio).16 A threshold based on previous anti-
doping data and population studies was first set at 6 by the I O C in
198323–26 and later lowered to 427 to discriminate between normal
and abnormal values. Urine samples showing a T/E ratio above the
threshold were then submitted to further analyses such as gas chro-
matography-combustion-isotope ratio mass spectrometry to evalu-
ate the steroid profile and the endogenous or exogenous origin of
the target compounds.28 The sensitivity of the T/E ratio approach
based on population-based reference ranges has been questioned
since 1994.25 At that time, individual reference ranges, instead of
population-based references, have already been proposed and used
in steroid profiling. By the work of Sottas et al, a new and very
effective mathematical tool came into this field which allowed an
optimised evaluation of the longitudinal data. This mathematical
model is, currently, one of the basic tools of the ABP.19

The aim of this paper is to summarise and discuss the main
factors influencing the analytical processes, steroid profiling and
interpretation of the obtained data that will be interpreted
through the ABP steroidal module.

ABP AND THE STEROIDAL MODULE
In 2008, the ABP has been implemented for haematological
parameters based on a Bayesian statistical model that allows
monitoring of intraindividual fluctuations of blood doping
markers.29 Knowing that every athlete has his/her own

metabolism and responds differently after any drug misuse, this
profiling approach is relevant for the results management in the
fight against doping. Even if the follow-up of secondary markers
indicating a drug intake or a manipulation to increase the per-
formance skills is becoming essential, direct detection of prohib-
ited substances is still necessary to prevent athlete from
cheating, and the biological passport profile may assist in target-
ing the doping control analysis to particular additional tests,
such as GC-C-IRMS.

As the urinary steroid profile, especially the T/E ratio, is well
known as being a stable marker within an individual,12 24 the
integration of the adaptive steroidal module was a natural evolu-
tion of the ABP.30 This module aims to identify endogenous ana-
bolic androgenic steroids when administered exogenously and
other anabolic agents, such as selective androgen receptor mod-
ulators categorised under section S1 of the Prohibited List.31 Six
markers are considered within the steroidal module which are T,
E, androsterone, etiocholanolone, 5α-androstane-3α,17β-diol
(5α-diol) and 5β-androstane-3α,17β-diol (5β-diol), although Van
Renterghem et al32 proposed additional compounds to be inte-
grated in the ABP.

As described in the recently published ABP Operating
Guidelines and Compilation of Required Elements, data collection
and administration requires specific partners such as anti-doping
organisations (ADOs), Athlete Passport Management Unit
(APMU), WADA-accredited laboratories, expert panel and
WADA.33 Each of these entities has its own responsibilities to guar-
antee reliability and credibility of the ABP programme.

Briefly, ADOs are in charge to perform an appropriate and intel-
ligent follow-up of their athletes according to the International
Standard for Testing (IST).34 In the process they should also con-
sider the recommendations of the APMUs which are responsible
of the passports real-time management through the evaluation of
the data of a single sample with respect to the profile generated by
the adaptive model in Anti-Doping Administration &
Management System (ADAMS). In addition, APMUs make con-
nections with the expert panels that are necessary to bring out any
pathology or confounding factors that could impact analytical
results provided by the laboratories which shall adhere to the
WADA technical documents TD2014BAR and TD2014EAAS for
haematological and steroidal module, respectively. Moreover,
expert scientists may also request additional testing for a specific
athlete to collect further indications of pathologies or to
strengthen an atypical passport finding (ATPF).

Altogether, close cooperation between testing authorities,
sample collection authorities and laboratories is mandatory to

Figure 1 Target analytes of the steroid profile, their
interindependence and metabolic pathway. 5α-/5β-diol, 5α/
5β-androstane-3α,17β-diol; DHEA, dehydroepiandrosterone; DHT,
dihydrotestosterone.

Figure 2 Example of steroid profile
generated by the Bayesian model of
the ABP for the T/E ratio parameter.
The blue line represents the measured
T/E values, whereas the individual
limits are shown by the red lines. ABP,
athlete biological passport; E,
epitestosterone; T, testosterone.
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ensure a prompt transfer of information and adequate timing of
testing and to allow the ABP programme to be efficient.22

Confounding factors for the steroid profile evaluation
Various factors are capable of influencing either the quantifica-
tion of the urinary steroid profile or its interpretation.35 36 The
endogenous or exogenous origin of those issues allows for their
classification into two main categories, as shown in figure 3.
Technical aspects related to the specific application of the anti-
doping regulations or to the steroid analytical measurements in
urine are also depicted in figure 3, and will be discussed further
in this review.

Endogenous factors
General considerations
The ABP aims at monitoring of an individual athlete with
respect to his/her own, long-term steroid profile. Interesting
parameters with this respect are the general endogenous factors
which, on one hand, set the baseline of an individual, and, on
the other hand, may lead to ‘natural’ variation of the profile
within a long period of time. Among these factors are, for
example, age and gender of the athlete. A major role is played
also by ethnicity, but as these interindividual differences are
linked essentially to genetic polymorphism, these properties are
discussed in connection to androgen metabolism. As a general
remark for the interpretation of the results originating before
year 2005, it should be notified that the critical value of T/E for
doping control purposes was >6, instead of >4.

Ageing and endogenous steroid synthesis
Raynaud et al37 carried out a study of 141 normal male partici-
pants (aged 8–26 years), categorised the population into five
groups based on the development stages according to Tanner’s
scale and compared the excretion profiles of Tand E between dif-
ferent age groups. According to their report, excretion of both
markers increased significantly during development and corre-
lated highly (p<0.001) with age. However, a significant differ-
ence was observed between the increase of T and E relative to
age, Texcretion increasing much faster than E and indicating the
potential instability of T/E during puberty. In another study, ori-
ginating from approximately same time, Dehennin et al38 studied
a population of 140 male participants (aged 13–20 years) with

respect to urinary excretion of several endogenous steroids and
luteinising hormone (LH). Although they concluded that the
increase in excretion rates of glucuronide-conjugated Tand E cor-
related with pubertal development, the result was somewhat con-
trary to earlier one with respect to T/E, where the observed
differences were not significant. In this study, ratio of
T-glucuronide to LH, which has been proposed as additional
information on T misuse,39 40 increased throughout puberty. An
independent study from Schweizer et al41 with 100 male partici-
pants (aged 10–17) supports the results of Dehennin et al, as
their study showed insignificant change in T/E between different
stages, although higher instability of the ratio was associated to
prepubertal stages. In a group of adolescent girls (aged 6–17,
n=256), the same research group observed a decreasing T/E ratio
during development, most obviously due to larger relative
increase in E excretion. The results were similar between exercis-
ing and control group of participants.42

Gender effects, circadian variations and physical activity
Interindividual variation in genetics, in enzyme distribution and,
consequently, in drug metabolism are discussed later in this
review in detail. Briefly, two main families of enzymes contribut-
ing the drug metabolism in humans are cytochrome P450
(CYP450), which is responsible for phase I reactions, and
uridine diphosphate glucuronosyltransferase (UGT) enzymes,
which catalyse the phase II conjugation reaction with glucuronic
acid. Gender-dependent differences in enzyme activity have
been demonstrated for several CYP isoenzymes and for UGTs,
supporting the possibility of quantitative differences between
female and male athletes. However, the genes for CYP and UGT
proteins are not linked to X-chromosome, and, thus, the preva-
lence of poor metabolisers should not be expected to be differ-
ent between genders.43

In fact, reference concentration ranges of urinary T and
excreted metabolites have been published previously with lower
levels in female participants than in male participants.17 39 44

Periodical variations in hormones concentrations are well
established in different species and matrices.45 In humans, T is
also subjected to these fluctuations, as is previously shown in
serum,46 saliva47 and urine.48 49 This daily, monthly and even
yearly based variability of steroid hormones concentrations
should not significantly impact the longitudinal follow-up of

Figure 3 Schematic representation of
the variables influencing the steroid
profile in the fight against doping.
ABP, athlete biological passport;
GC-C-IRMS, gas chromatography and
combustion coupled to isotope ratio
mass spectrometry; ITP, initial testing
procedure.
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participants, and is included within the normal intraindividual
variation of the steroid profile components.

Regarding the urinary steroid profile and physical exercise
there are studies concluding differences between sedentary and
exercising individuals,50 and that the physical activity may influ-
ence the elimination of androgens due to changes in sex
hormone binding globulin (SHBG).51 A group of trained female
athletes was investigated by Bricout et al with respect to urinary
steroid profiles during menstrual cycle and compared with non-
athlete (sedentary) group. T and E were measured from
glucuronide-conjugated fraction by radioimmunoassay (RIA),
and based on this study, the T/E remained stable between the
follicular phase and luteal phase of menstrual cycle within
athlete (0.66±0.05 vs 0.69±0.33) and non-athlete (0.72±0.26
vs 0.67±0.31) groups. As a conclusion, it was stated that
although physical training may have an effect on androgen
metabolism, active sportswomen can be considered as members
of normal population as long as there are no signs of secondary
amenorrhoea induced by physical activity.8 Regarding male par-
ticipants, similar results were previously published by Donike
et al,25 who showed that high workload during the Tour de
France does not influence the T/E ratio in top-level athletes.

During pregnancy, however, female athletes encounter much
more dramatic changes. Controlled longitudinal studies of
steroid profile during pregnancy are scarce, but according to
available data, significant alterations occur not only in the pro-
duction of progesterone and oestriol, but also in androgen con-
centrations. For the status of the steroid profile and its
interpretation, the most significant factors are pregnandiol (PD)
and T itself. According to Mareck-Engleke et al,9 the PD con-
centration may increase up to 10–100 fold (to 10 000 ng/mL)
from the baseline levels during the early pregnancy, and despite
being quite theoretical in performance-sport context, the levels
of 20 000 ng/mL concentration can be reached just before deliv-
ery. In their recent work, Fabregat et al10 conducted a longitu-
dinal study in three pregnant women, and focused on
cysteine-conjugated androgens and glucuronide-conjugated
androgens and oestrogens during different trimesters of preg-
nancy. From a steroid profile perspective, there was a significant
increase in urinary oestrogen levels and moderate decrease in
urinary androgen concentration, and thus alteration in general
profiles due to pregnancy. Interesting results were obtained for
E glucuronide concentrations, which were elevated during the
first trimester, and thus a feature to take into account in inter-
preting of T/E in steroid profiles of female athletes. The results
of this study were also well in accordance with the earlier ones
describing the formation of norandrosterone, a nandrolone
metabolite, during pregnancy.11 52

Metabolism, genetics and interindividual variation
Androgens are an essential part of endocrinological homeostasis
in human body and their dual effects are associated mainly to
masculinisation (androgenic effects) and protein synthesis (ana-
bolic effects). There are several mechanisms and functions
which mediate the androgen action, control the transport and
binding of T and other androgens or activate the expression of
androgen-responsive genes. In human genome, two or more var-
iants can be encountered for a particular DNA sequence. In its
simplest form, this natural variation, polymorphism, involves
not only a single nucleotide (SNP), but also longer DNA
stretches can be involved. The outcome of the complex network
of these bioprocesses and interindividual as well as interethnic
variations within them leads to a steroid profile with an individ-
ual baseline of endogenous steroids. Massive amounts of

research results are available on the clinical and pathological
relevance of androgens and the factors contributing to the
phenotype of an individual. For example, low serum T concen-
tration is associated to several pathological conditions, for
example, cardiovascular morbidity, type 2 diabetes and
increased risk of mortality. As the studies indicate strong herit-
ability of serum T levels and clinical studies have focused on T
as a biomarker of male health status and on the effects of
genetic variants on serum T concentrations. Although sports and
doping control involve only minor fraction of population, the
atypical patterns, anomalies and pathological conditions are
factors to keep in mind when evaluating individual athlete
profiles.

Serum testosterone and physiological effects
The earlier mentioned SHBG is the most important carrier
protein for androgens. The dimeric protein consists of two iden-
tical peptide chains of 370 amino acids. SHBG synthesis is sti-
mulated by oestrogen in the liver and decreased by androgens
and anabolic steroids. Together with serum albumin (binding
40–50% of T), SHBG (binding ≈50–60% of T) forms circulat-
ing reservoir of T,53 balances the concentration of free fraction
and decreases the rate of metabolism in the liver. With respect
to genetic variation, studies have revealed SNP which alters
SHBG binding affinity for T.54 Parallel to carrier proteins, there
are transporter proteins which are involved in the absorption,
distribution and elimination of drugs by participating to perme-
ation of the drugs into cells and access of the drugs to their
targets.55 Genetic polymorphism has also been shown to occur
at this phase of bioprocesses, of which an example is the
organic ion transporter OATP1B3 (encoded by SLCO1B3 gene)
and its two polymorphic variants which transport T with
varying efficiencies.56

The actions of anabolic androgenic steroids are executed via
various mechanisms. At androgen receptor (AR) level, these
mechanisms include indirect modulation of expression by intra-
cellular metabolism and direct effect on the AR topology, which
leads to subsequent interaction with coactivators and transcrip-
tional activity.57 Human AR is a nuclear transcription factor,
belongs to the nuclear receptor superfamily58 and mediates
male sexual differentiation as well as the development and
maintenance of sexual characteristics. The molecular structure
of AR is well characterised and comprises polymorphic
N-terminal domain, a central well-conserved DNA-binding
domain and a C-terminal ligand-binding domain.59 According
to the literature, more than 300 mutations in the X linked AR
gene result in androgen-insensitivity syndrome,60 and most of
the mutations in the ligand-binding domain disrupt binding of
the natural ligands dihydrotestosterone (DHT) and T.61

Androgens metabolism
Androgens may undergo metabolic reactions prior to their
physiological effect, that is, as part of their biosynthetic path-
ways. As an example, enzymes CYP11A1 and CYP17 from the
CYP450 family participate in the modification of cholesterol to
yield T,62 which is then converted to biologically more active
DHT by steroid-5-α-reductase type 2 enzyme (SRD5A2) in the
prostate.63 64 For rational targeting of analysis and appropriate
result interpretation in doping control and for ABP purposes,
however, the bioprocesses concerning metabolism and urinary
excretion, and interindividual variability within these processes,
are of major importance. Owing to highly non-polar nature of
anabolic steroids, the parent compounds are often converted by
metabolising reactions prior to their elimination and excretion in
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urine. A rough division into two main categories can be made,
namely phase I and phase II metabolic reactions. These processes
typically aim at termination of pharmacological activity, modifi-
cation of steroid structure into less potent, more polar and better
water-soluble form, and thus an enhanced excretion of steroids
into urine. In human body, several organs are involved in meta-
bolic processes, the liver being the main site of the reactions.

Phase I reactions (ie, functionalisation) of androgens include
hydroxylation, oxidation and reduction,65 and involve CYP450
enzymes, dehydrogenases (eg, type 5 17β-hydroxysteroid dehydro-
genase (AKR1C3)66) and 5α-reductases and 5β-reductases,67 68

which catalyse the reactions. In general, CYP450 family plays a sig-
nificant role in metabolism and genetic variability in humans, as
70–80% of all drugs are metabolised via isoenzymes of families
CYP1, 2 and 3, and expression of each CYP is influenced by a
unique combination of factors including genetic polymorphisms.
From the putative 57 functional isoenzymes, the highest expressed
forms in the liver are 3A4, 2C9, 2C8, 2E1 and 1A2,69 from which
3A4 contributes to 6β-hydroxylation of T and shows ethnicity-
related polymorphism.70 71 Furthermore, in the metabolism of T,
the CYP17 gene promoter polymorphism has been suggested to
explain naturally elevated T/E ratios due to involvement in cataly-
sis of 5-androstene-3β,17α-diol, an important precursor of E.72

Phase II reactions, conjugations, play a remarkable role in the
metabolism of androgens, as in an average, the unconjugated
fraction represents only less than 3% of the total amount of
urinary excreted compounds.73 Glucuronidation, that is, conju-
gation with glucuronic acid, is the main conjugation reaction of
androgens in humans (figure 4A). Reaction is catalysed by
UGTs, which are a family of membrane-bound enzymes in the
endoplasmic reticulum. Human genome contains four UGT
families,74 from which UGT1 (9 members) and UGT2 (10
members), especially the members of subfamily UGT2B, are the
most significant genomes in glucuronidation of androgens.75–78

With regard to UGT isoenzymes, polymorphism has been
reported for several genes, but in doping control context, a
deletion polymorphism in the gene coding UGT2B17 is of pro-
found significance. It is strongly associated with urinary levels of
T glucuronide and thus with T/E ratio, and interethnic variation
has been observed in the prevalence of gene deletion.79–82

Sulfotransferase enzymes (SULT) transfer a sulfo moiety from
a co-substrate (3’-phosphoadenosine-5’-phosphosulfate (PAPS))
to the substrate in sulfoconjugation (figure 4B). A total of 13
human cytosolic SULT genes have been identified until now, and

they are categorised into families SULT1, SULT 2, SULT4 and
SULT6.83 Although glucuronidation is the main conjugation
pathway of endogenous androgens in humans, substrates with
3β-hydroxy structure (eg, dehydroepiandrosterone) are sulfo-
nated to high extent and the activity has been reported for
SULT2B1,84 but especially with SULT2A1, which is poly-
morphic (SNPs as well as copy number variation) and for which
the allelic variants are associated with decreased activity and
expression.85 86

Exogenous factors
Human metabolism is subjected to significant variations caused
by multiple external factors. With regard to the urinary steroid
profiling, environmental conditions, drug administration and
diet have been identified as sources of alteration of steroids
metabolism and excretion from the body.

Drugs and medication
From the athlete and doping control perspective, all personal
properties and genetic polymorphism involved at each level
have an influence on the formation of ‘normal profile’ of an
individual and justify the shift from population-based reference
values to the direction of the ABP. However, the phenotype of
an individual is also regulated strongly by the exogenous factors,
which may temporarily interfere with the homeostasis and the
metabolic routes of endogenous steroids. The effect of various
pharmaceutical preparations (eg, endogenous and exogenous
steroids, oral contraceptives, human chorionic gonadotropin,
LH and glucocorticosteroids) on T/E and steroid profile is
extensively summarised earlier, especially by Mareck et al36 and
also elsewhere,14 87–91 emphasising the alterations in androgen
synthesis arising from the feedback received via hypothalamic–
pituitary axis.

Another category of exogenous factors that define the steroid
profile includes compounds affecting the metabolism and elim-
ination of androgens. In general, the endogenous compounds,
drugs and other xenobiotics undergo the same metabolic path-
ways, and thus compete and interfere (either by enzyme inhib-
ition or induction) with each other. Taking into account the
reactions connected to androgen metabolism, the most signifi-
cant ones are those involving 5α-reductases. Consequently,
5α-reductase inhibitors, such as finasteride, which are aimed at
the treatment of prostatic hyperplasia and which influence
mainly the type 2 5α-reductase present in prostate, suppress the

Figure 4 Schematic illustrations of
(A) glucuronidation and
(B) sulfoconjugation of testosterone.
SULT, sulfotransferase enzymes;
UGT, uridine diphosphate
glucuronosyltransferase.
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formation of DHT from T,92 93 and thus interfere with the
interpretation of the ABP profile. Analogous to this mechanism
of effects, type 5 17β-hydroxysteroid dehydrogenase (AKR1C3)
catalyses the reduction of 4-androstene-3,17-dione to T, and the
inhibition of this pathway would be desired, for example, for
the treatment of hormone-dependent and hormone-independent
cancers. Several compounds, such as non-steroidal anti-
inflammatory drugs (NSAIDs), steroid hormone analogues and
benzodiazepines, have been explored as inhibitors of AKR1C366

and could impact the measured T concentration.
For conjugation reactions, inhibition properties of NSAIDs

have been demonstrated for steroid glucuronidation in an in
vitro assay,94 but the observations were not confirmed by in
vivo experiments.95 One particular therapeutic drug, ketocona-
zole, should be mentioned due to its unique property to inhibit
T synthesis,96 97 as well as the binding of DHT to SHBG,98 and
to exhibit inhibition of CYP3A4 system.99 As all these features
may have an implication to steroid profile, anti-doping labora-
tories report the presence of ketoconazole as part of confirm-
ation analysis.

Ethanol and tea
Aside the investigated physiological effects of alcohol on phys-
ical performance skills100 and the widespread habit among top
level athletes,101 ethanol could have an effect on metabolic
pathways linked to steroids biotransformation,102–104 and this
may be mainly due to a competitive inhibition of oxidative
enzymes such as 17β-hydroxysteroid dehydrogenases (17HSD)
and UGTs (ie, UGT2B17) involved in alcohol and steroid meta-
bolisms. The main observed effects of ethanol on steroid profile
are the decrease in androsterone and etiocholanolone concentra-
tions up to 10% of the basal levels and less significant increase
in T excretion resulting in a slight rise of T/E ratio.105 106

Urinary steroid concentrations in women are more sensitive to
these modifications caused by ethanol consumption,103 107 and
obviously the dose and the frequency of alcohol abuse are key
factors that determine the amplitude of alterations in
metabolism.

Since quantification of urinary steroids is influenced by the
presence of alcohol in the body, monitoring of alcohol markers
is necessary for anti-doping laboratories. Ethylglucuronide (EtG)
and ethylsulfate are widely used parameters in clinical and
forensic toxicology to control ethanol consumption or abstin-
ence.108–111 In 2011, Thieme et al112 published a study showing
that EtG is the most suitable quantitative marker of ethanol con-
sumption, allowing the evaluation of steroid profiling alteration.
The question of the threshold is still remaining and various
studies are in progress to establish a shared EtG concentration
level at which alcohol could impact significantly the steroid
concentrations.

In case of abnormally high T/E ratio due to ethanol drinking,
additional analysis with GC-C-IRMS would prove that no
exogenous Twas misused by the athlete, showing the usefulness
of this technique as described further in this review. However,
some precautions need to be taken in the interpretation of
GC-C-IRMS results as few studies provided evidence that diet
components7 and geographical origin113 may affect delta values
of the investigated steroid compounds.

Recently, Jenkinson et al114 reported that in vitro green and
white teas suppress UGT2B17, a key enzyme for the glucuroni-
dation of T (figure 4A). The inhibition of this pathway would
increase free T level in human tissues and a potential doping in
optimising free T. As for the NSAIDs, the influence of green tea
on T metabolism, as shown in in vitro experiments, has most

probably no effect on the urinary steroid profile. Furthermore,
the publication of these results were appeased by anti-doping
experts saying that the required amount of administered tea for
a significant change in steroids concentrations is considerable
and that a human interpretation of steroid profiles is always per-
formed in any suspicious case.

Environment and bacterial contamination
Although it is known for many years that bacteria and microor-
ganisms also alter steroid profiles,115 peer-reviewed papers
investigating the ability of microbiological contamination to
modify the urinary steroid profile were published only
recently.36 116–119 During the diuresis and storage in the
bladder, urine is germ free, but when leaving the human body
or subjected to bacterial exposure, enzyme activity linked to
microorganisms may lead to a rise or a drop of endogenous
steroid concentrations or even to the hydrolysis of conjugated T
metabolites. 5α-androstanedione and 5β-androstanedione, ori-
ginating from a bacterial transformation of androsterone glucur-
onide and etiocholanolone glucuronide, respectively, are
markers that WADA-accredited laboratories screen and quantify
in urine to reveal an adulteration of the biological samples with
microorganisms.120 121 Another marker of bacterial contamin-
ation is an increase of free T concentrations, which may lead to
elevated T/E ratio.36

Besides modifications of endogenous steroid profiles, other
anabolic androgenic steroids such as 19-nortestosterone (nan-
drolone) and boldenone could be produced by microorganisms
in urine matrix.44 118 122 123 Identification of microorganisms
that could be found in contaminated urine among the huge
diversity of bacteria is possible through a variety of accurate
methods such as sensory observations, assessing turbidity, pres-
ence of precipitate and smell and measurement of pH. In 2010,
Ojanperä et al124 published an approach based on PCR and 16S
rRNA gene sequencing for microbes identification, and thus
potential steroid profiles adulteration.

Methods using matrix-assisted laser desorption ionisation-
time of flight MS has recently been developed as a very effective
tools to identify bacteria in biological fluids.125–127 This
approach is of valuable interest in clinical microbiology but is
not easily adapted to the prevailing technologies in the anti-
doping laboratories.

Despite the efficiency of these techniques, identification and
quantification of microbial degradation products such as
5α-androstanedione and 5β-androstanedione is still the pre-
ferred approach advocated by WADA in TD2014EAAS.

Doping control and analytical factors
Factors that are not dependent on technical aspects and linked
to the urinary steroid profile data acquisition have been well dis-
cussed above. Nevertheless, analytical techniques that are used
in WADA-accredited laboratories should also be considered
when a longitudinal steroid profiles follow-up is evaluated and
interpreted by anti-doping stakeholders.

GC/MS versus GC-MS/MS and application of the WADA
technical document
Traditionally, anabolic androgenic steroids and their representa-
tive metabolites have been analysed by GC-MS-based methods,
and the analysis of exogenous steroids has been qualitative of
origin. The analysis of ‘total’ (ie, free and glucuronide-
conjugated) fraction of steroids is indirect, since glucuronide-
conjugated analytes are enzymatically hydrolysed before the
next step of the procedure, which is typically liquid–liquid
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extraction (LLE) in alkaline environment, for example, tert-
butyl methyl ether.36 For GC separation, the analytes are con-
verted to trimethylsilyl (TMS) derivatives and in order to
accomplish this effectively also to ketosteroids, the reaction
mixture includes components which allow for in situ formation
of trimethyl iodosilane.128 Along the developments in instru-
ment technologies, the routine GC methods apply also tandem
mass spectrometric (MS/MS) approaches to steroid analysis,
which provide improved selectivity and often also higher sensi-
tivity for the detection of analytes.

In the new situation where quantitative data are based on
initial testing procedure (ITP) and are originating from different
anti-doping laboratories, harmonised methodologies and
uniform reporting are prerequisites for the steroid profiling. For
that purpose, WADA has recently compiled a new technical
document, TD2014EAAS, which is a mandatory operational
procedure for laboratories to support the steroid profile quanti-
fication of the steroidal module of the ABP.12 The document
gives an introduction to the steroid profiling and detailed
description on the requirements for ITP and confirmation
analysis.

All critical steps of the analytical procedure and monitoring
of their success are covered by the document. Issues connected
to sample matrix include the adjustment of the sample aliquot
volume in case of diluted samples or based on the gender of the
athlete with the driving force to be able to provide a reliable
steroid profile for each urine sample. At later stages of the
process, the laboratory should also monitor the sample integrity,
for example, for the presence of microbial degradation. Most
often the analytical procedure for steroid profile parameters
involves hydrolysis of glucuronide-conjugated steroids, extrac-
tion of free steroids and deliberated steroid aglycons, derivatisa-
tion and GC-MS or GC-MS/MS analysis. In the method
characteristics, the type of glucuronidase enzyme is specified as
purified preparation for Escherichia coli to avoid by-products
during the hydrolysis, the efficiency of which should also be
controlled. The overall analytical process and the critical factors
influencing the measurement and result interpretation of steroid
profile are extensively reviewed earlier by Mareck et al,36 men-
tioning amineptine as an example of a drug which may inhibit
β-glucuronidase activity, and, furthermore, one of its metabolites
yield in MS fragmentation which may interfere the screening of
androsterone and etiocholanolone. Other specific substances
and factors that have been reported to affect (mainly to interfere
with) the hydrolysis of steroid glucuronides, and to offer some
references to the corresponding literature, include ascorbic
acid,128 aspartic acid, malic acid and high concentrations of sali-
cylic acid,129 chlorinated hydroquinones and benzoquinones,130

as well as glucosaccharic acid derivatives (eg, saccharic acid
1,4-lactone), which have been reported to inhibit
β-glucuronidase activity under in vitro conditions.131

According to the technical document and GC separation, for-
mation of TMS derivatives is required and the completeness of
derivatisation step should be verified by monitoring mono-O-
TMS and di-O-TMS derivative of androsterone. The document
sets quality requirements with respect to instrument operation
and data collection by instructing the verification of the stability
of calibration standards, incorporation of quality control sample
with each analytical sequence and calculation of the T/E ratio,
as well as by setting the requirements for the sensitivity (limits
of quantitation) and quantitative performance (relative standard
combined uncertainty, uc(%)) of the method. In confirmation
analysis, the analytical approach incorporates also information
from GC-C-IRMS analysis (see below) and the results,

quantitation and identification of the relevant steroid profile
marker(s) and/or T/E ratio.

For the result interpretation, the laboratories should also
monitor the sample for the presence of 5α-reductase inhibitors
(eg, finasteride), which are not prohibited substances but may
alter the steroid profile due to their mechanism of action. In
confirmation analysis, the additional tests are applied to deter-
mine the presence of ethanol metabolites, ketoconazole or signs
of microbial degradation, to reveal the potential external inter-
fering factors before issuing the results into ADAMS and adap-
tive model purposes.

Gas chromatography-combustion-isotope ratio mass spectrometry
IRMS is a powerful device that allows the source determination
of the investigated compounds based on variations of stable iso-
topes. IRMS has many applications such as pharmacology, food
research, archaeology, environment sciences and forensic
science.132 133 Doping is also a domain in which IRMS can
provide informative data as one of the main challenges for T
doping detection is to establish the origin of this hormone as it
could be found either produced endogenously by the body or
by misuse through an exogenous administration. The first appli-
cation in doping was published in 1994 by Becchi et al,28 who
employed GC coupled to IRMS for the determination of carbon
isotope ratio of T extracted from human urine. This significant
work was then followed by numerous studies that explored
doping detection based on the carbon isotopic ratio of endogen-
ous hormones linked to T metabolism.7 14 134–147 Recently,
some T preparations were reported as having a similar carbon
isotopic ratio compared with T produced endogenously,148 149

pushing scientists to find alternative methods based on hydrogen
and deuterium ratio to discern naturally produced T from
synthetic formulations.150–152 Since its introduction in the anti-
doping laboratories, GC-C-IRMS has provided robust and reli-
able data to convict many athletes for T misuse in sports. Until
now, GC-C-IRMS analysis was performed whenever a urine
sample showed a T/E ratio above the threshold and was consid-
ered as the ultimate proof of doping if the carbon isotopic ratio
of T or its metabolites was significantly different from one of
the defined endogenous reference compounds.27 New technical
document TD2014EAAS has been effective since the beginning
of 2014 and according to this document, GC-C-IRMS analysis
shall be applied on suspicious sample only in confirmation step
after the evaluation of the steroid profile through the adaptive
model of the ABP. In the case where the adaptive model cannot
be used, IRMS shall be performed in specific conditions such as
a T/E ratio greater than 4 or a T or E concentration (adjusted
for the specific gravity) greater than 200 ng/mL in males or
greater than 50 ng/mL in females.12 More details about IRMS
analyses and interpretation in WADA-accredited laboratories are
expected in the upcoming new technical document dedicating
to this analytical technique. In summary, GC-C-IRMS represents
a complementary but necessary information source for the
steroid profile evaluation.

Alternative methodologies for steroid quantification
While GC-MS (and recently GC-MS/MS) has been the analyt-
ical reference technique for steroid quantification in urine
matrix for many years, some alternative approaches have been
considered. First, the use of immunological tests was investi-
gated,153–155 as the main advantages of this method is the possi-
bility of automated processes (simple and rapid), the lower costs
and the routine ease-of-use for non-scientific staff. Although
ELISA assays have shown good total specificity and appropriate

Kuuranne T, et al. Br J Sports Med 2014;48:848–855. doi:10.1136/bjsports-2014-093510 7 of 11

Review



sensitivity for T, the main drawbacks of this biochemical
approach are the cross-reactivity that could lead to wrong esti-
mation of T concentration and the restricted application to a
single compound (eg, T) which is not compatible with the inten-
tion to establish a profile with several steroids. In addition to
these limitations for steroid quantification and identification,
radioimmunoassay (RIA) tests in urine present other drawbacks
such as non-availability of RIA assay kits in the market for urine
steroid detection and the matrix effect being more significant
for RIA kits than for ELISA kits.156 Considering these disadvan-
tages, anti-doping laboratories never deemed immunoassays as a
useful tool to establish a steroid profile.

The determination of steroid concentrations by GC-MS tech-
nique requires essential steps prior to analysing the urine
samples. Solid phase extraction (SPE) and/or LLE, hydrolysis,
evaporation and derivatisation are necessary to obtain robust
and reliable data but could also be a source of variability and
inaccuracy. Measuring the steroid compounds by LC-MS instru-
ments could overtake these steps. The first attempts were made
about 30 years ago to detect steroids produced in rat liver
microsomes.157 158 More recently, some authors have published
LC-MS methods to quantify T and E in human urine,159 but
hydrolysis and extraction steps were still required to detect the
free fraction of the steroids. In the meantime, Bowers5 devel-
oped a LC-MS method for the quantification of T and E conju-
gates (sulfate and glucuronide) which stimulated many other
authors to investigate the LC-MS detection of the steroids con-
jugated fraction.160–163 Whereas quantification of steroids conju-
gates by LC-MS was first published in 1996 by Bowers and
Sanaullah,164 in 2011, Badoud et al165 presented a method
based on a high-resolution MS strategy for the quantification of
11 steroids conjugates after a simple SPE step. Two years later,
the same group increased the number of targeted analytes to 13
and applied their quantification method on samples collected
after T administration.166 A comparison was made between data
obtained with traditional GC-MS and LC-MS techniques, and
as a conclusion, a good correlation was depicted showing the
possibility of measuring urinary steroid based on conjugated
compounds and by LC-MS technique.

Despite these promising LC-MS results, this analytical
approach is not encouraged in the recently published technical
document, but initial testing analysis and confirmation should
be based on GC separation.

CONCLUSIONS
The establishment of urinary steroid profile through analytical
quantification of T and its related compounds has been proven
to be a reliable and efficient tool for endogenous anabolic
androgenic steroids misuse detection. An additional and signifi-
cant step in the steroid profile application in the fight against
doping is the integration of the steroidal module within the ABP.
Although the steroid profile components are quite stable against
physical exercise, menstrual cycle or biological rhythms (circa-
dian or annual), many exogenous and endogenous influencing
parameters exist. These confounding factors could not be moni-
tored only by the ABP steroidal module but need scientific
expertise to be evaluated and to avoid any sanction of athlete
simply based on the statistical and mechanical approach of
steroid profile monitoring.

Essential part of the steroid profile is a representative number
of samples, well-planned testing strategies and significant effort
from sample collection authorities, as well as smooth cooper-
ation between ADOs. Sample collection and transportation con-
ditions should be organised in an appropriate manner to

preserve the sample integrity, and the laboratories should be
harmonised in analytical methodologies to provide reliable and
comparable results. WADA-accredited laboratories should not
only focus on endogenous steroids quantification but also on
the detection of exogenous factors such as drugs interfering
with metabolic pathways or adulteration markers. Genetics
factors are much more sensitive considering the ethical issues.

As the final stage, the passport management units as well as
the scientific expert panels should be well trained and experi-
enced in the interpretation of analytical data and profiles in
order to distinguish between ATPFs and pathological or clinical
conditions which may alter the individual passport results.

In summary, a strong collaboration of every anti-doping
partner, from testing strategy to result interpretation, is manda-
tory to optimise and to enhance the tools allowing the detection
of doping with Tand related compounds.

Summary

▸ New steroidal module of the athlete biological passport in
place since January 2014.

▸ Two distinct classes of factors can influence the
quantification of endogenous steroid compounds linked to
testosterone and its metabolism.

▸ Endogenous factors include ethnicity, gender, age and
genetic polymorphisms whereas exogenous factors comprise
medications, diet, matrix composition and analytical tools
used for the quantification.

▸ Implementation of the steroidal module depends on the
evaluation of steroid profiles through a dedicated statistical
model but also on the expertise given by specialised
scientists.
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