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ABSTRACT
Administration of GH-releasing peptide-2 (GHRP-2) represents a

potential mode of therapy for children of short stature with inade-
quate secretion of GH. Requisite information to determine the dosing
route and frequency for GHRP-2 consists of the pharmacokinetics
(PK) and pharmacodynamics (PD) for this compound, neither of which
have been previously evaluated in children. The purpose of this study
was to characterize the PK and PD of GHRP-2 in children with short
stature. Ten prepubertal children (nine boys and one girl; 7.7 6 2.4
yr old) received a single 1 mg/kg iv dose of GHRP-2 over 1 min, followed
by repeated (n 5 9) blood sampling over 2 h. GHRP-2 and GH were
quantitated by specific RIA methods. PK parameters were calculated
from curve fitting of GHRP-2 and GH vs. time data. Posttreatment
plasma GH concentrations (normalized for pretreatment values) were
used as the effect measurement. PD parameters were generated using
the sigmoid Emax model. Disposition of GHRP-2 best fit a biexponen-

tial function. GHRP-2 PK parameters (mean 6 SD) were: a 5 13.4 6
9.7 h21, b 5 1.3 6 0.3 h21, t1/2b 5 0.55 6 0.14 h, AUC03` 5 2.02 6
1.37 ng/mLzh, Cmax 5 7.4 6 3.8 ng/mL, plasma clearance 5 0.66 6 0.32
L/hzkg, and apparent volume of distribution 5 0.32 6 0.14 L/kg. PK
parameters for GH were: appearance rate constant 5 5.9 6 3.1h21,
elimination t1/2 5 0.37 6 0.15 h, lag time 5 0.05 6 0.01 h, Cmax 5
50.7 6 17.2 ng/mL, Tmax 5 0.42 6 0.16 h, and AUC03` 5 47.9 6 26.1
ng/mLzh. PD parameters for GHRP-2 were: Ke0 5 1.13 6 0.94 h21, g 5
13.15 6 9.44, E0 5 6.63 6 4.86 ng/mL (GH), Emax 5 67.5 6 23.5 ng/mL
(GH), and EC50 5 1.09 6 0.59 ng/mL. We concluded that 1) GHRP-2
produced a predictable and significant (i.e. compared to pretreatment
values) increase in plasma GH concentrations; 2) the PK-PD link
model enabled quantitative assessment of GHRP-2 modulation of
serum GH levels; and 3) definition of the EC50 for GHRP-2 will enable
PD and PK evaluations of extravascular dosing regimens for children.
(J Clin Endocrinol Metab 83: 1168–1172, 1998)

THE GH-RELEASING peptides (GHRPs) are a family of
molecules that stimulate GH secretion. Originally dis-

covered while searching for a GnRH antagonist, these pep-
tides are structurally related to Met-enkephalin (1–3). Struc-
tural modifications have been made to make the GHRPs
more effective, selective GH secretagogues. The most potent
GHRP to date in humans is GHRP-2 (3, 4). The pharmacology
of GHRPs in man has been characterized and well described
previously (5–9).

A major potential clinical use for GHRP-2 is stimulation of
GH secretion when endogenous secretion is inadequate. In
many children with short stature and poor growth rates, the
problem appears to be insufficient GH secretion, not an in-
ability to produce GH. Evidence for this includes demon-
stration of subnormal 12- and 24-h GH pulsatile secretion

profiles and a robust GH response when GHRH or GHRP-2
is administered to these children (10–14). Thus, this patient
population may potentially benefit from treatment with a
GH secretagogue such as GHRP-2.

A feature of the GHRP-2 that makes it an attractive treat-
ment modality resides with its potential for administration
by noninvasive methods. Previous investigations have dem-
onstrated release of endogenous GH after the administration
of GHRP-2 via the oral, sc, and intranasal routes as well as
iv (3, 15–17). This is a possible advantage over GH or GHRH,
both of which must be administered parenterally. However,
before large scale studies of the safety and efficacy of GHRP-2
can be conducted in children with GH deficiency, the phar-
macokinetics (PK) and pharmacodynamics (PD) of this agent
in pediatric patients must first be characterized. Therefore,
we examined the PK and PD of iv GHRP-2 in children of
short stature who were undergoing evaluation for GH
deficiency.

Subjects and Methods

This study was of open design, with no blinding of the subjects or
investigators. Ten short prepubertal children comprised the study pop-
ulation. These children were all at least 2 sd below the mean height for
age, with mean of 23.03 6 0.16 sd. None of the children had evidence
of chronic disease, syndromic disorder, or skeletal dysplasia. The single
female patient had a normal karyotype. All children had a slow growth
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rate, delayed bone age, and low serum insulin-like growth factor I levels
(Table 1). Responses to GH stimulation tests, using standard secreta-
gogues (e.g. arginine, insulin, or l-dopa) were variable, with five patients
whose maximal GH response was more than 10 mg/L and five patients
whose GH response was less than 10 mg/L. Six of the children (including
the five whose maximal GH response was .10 mg/L) had 12-h, over-
night GH secretion studies. The mean GH concentration was low in each
patient; the group mean was 2.3 mg/L. Magnetic resonance imaging of
the head was performed in each child, and no intracranial lesions were
observed. Subjects were recruited by informed parental consent and,
where appropriate (i.e. age $7 yr), by patient assent. The protocol was
approved by the human research advisory committee of the University
of Arkansas for Medical Sciences.

On the day of testing, the subjects arrived at the Day Medicine Unit
of Arkansas Children’s Hospital between 0700–0800 h after an 8-h fast.
There was one exception, that being a child whose testing began at 1300 h
after a 4-h fast. An indwelling iv catheter was placed in each subject for
the purpose of repeated blood sampling. Two basal (i.e. pretreatment)
blood samples were obtained at 25 and 0 min for quantitation of both
GHRP and GH. A single injection of GHRP-2 (1 mg/kg) was then ad-
ministered iv over a 60-s period of infusion. Repeated blood samples (1.0
mL each) were obtained at 5, 10, 20, 30, 45, 60, 75, 90, and 120 min after
the end of the GHRP-2 infusion. Blood specimens were collected into
nonanticoagulant-containing glass tubes, where they were permitted to
clot at room temperature for 40 min. The specimens were then centri-
fuged at 2500 3 g and 4 C for 10 min. Serum was separated and
immediately frozen at 270 C until analysis.

Quantitation of GH from each serum specimen was performed using
a commercial polyclonal RIA (Corning-Nichols Institute, San Juan Cap-
istrano, CA). All GH samples from a given subject were run in the same
assay, thereby minimizing the effect of interassay variability on phar-
macokinetic profiles. Intra- and interassay coefficients of variation of this
RIA method for GH were 3% and 8%, respectively. GHRP-2 serum
concentrations were determined by a RIA developed and validated by
Wyeth-Ayerst Research (Princeton, NJ), which used a polyclonal anti-
body provided by Dr. C. Y. Bowers. The calibration curve had a range
of 62.5–2000 pg/mL. The interassay coefficients of variation and relative
errors ranged from 5.8–8.4% and 24.4 to 27.4%, respectively. The
GHRP-2 standards, quality control samples, and study samples were
analyzed in triplicate, and the mean values were used in performing
calculations.

Individual serum concentration vs. time data for both GH and
GHRP-2 were evaluated in each subject by use of the Siphar/Base
software package (SIPHAR, version 4.0, SIMED, Creteil-Cedex, France).
Initial polyexponential parameter estimates were generated with a peel-
ing algorithm (18). Final parameter estimates were obtained from curve
fitting of individual datasets using a nonlinear, weighted, least squares
algorithm, with the weight set as the reciprocal of the calculated plasma
concentration (19). Compartment model selection was made after ap-
plication of the Akaike information criterion (20). Additionally, good-
ness of fit for the serum concentration vs. time data was evaluated by
assessment of the variance-covariance matrixes and the coefficients of
variation for each polyexponential parameter (e.g. coefficients and ex-
ponents) calculated from a given model. Finally, model-dependent phar-
macokinetic parameters were calculated for both GH and GHRP-2 ac-
cording to previously described methods (21).

The pharmacodynamics of GHRP-2 were examined by normalization

of the posttreatment serum GH values to the mean of two pretreatment
measurements to obtain the discrete value of DGH. For the pharmaco-
dynamic analysis, the DGH values were used as a surrogate biomarker
for the pharmacodynamic effect exerted by GHRP-2 in each subject.
Visual inspection of the serum concentration vs. time data for both
GHRP-2 and GH (Fig. 1) and also of the DGH vs. time values (data not
shown) revealed a discordance in the serum concentration profiles com-
patible with an apparent equilibration delay between the serum con-
centrations of GHRP-2 and its pharmacological effect, as reflected by
serum GH concentrations. Thus, the data suggested that a pharmaco-
kinetic-pharmacodynamic model could be constructed that links the
concentration of drug in the central (i.e. serum) compartment with the
concentration of drug in an effect compartment (22). Accordingly, con-
centration vs. effect profiles were then generated from the DGH values
for each subject by use of the sigmoid maximal effect model described
by Holford and Sheiner (22). Pharmacodynamic parameter estimates
[maximal effect (Emax) serum concentration associated with 50% re-
sponse as measured by post-treatment increase in serum concentration
(EC50), and sigmoidicity constant (g)] were then calculated using an
extended least squares algorithm with variance assumed to be constant
(i.e. a homoscedastic model). The pharmacodynamic analysis was con-
ducted using programs contained within the Siphar/D software pack-
age (SIPHAR, version 4.0, SIMED).

Serum GH and GHRP-2 concentration data as well as the pharma-
cokinetic and pharmacodynamic parameter estimates are represented as
the mean, sd, and range for the respective values. Relationships between
subject age and the pharmacokinetic parameters for the entire study
cohort were examined using a nonlinear, least squares, regression al-
gorithm. All statistical tests were performed using subroutines con-
tained within the S-STAT program (SIPHAR, version 4.0, SIMED) or in
Excel (version 5.0, Microsoft Corp.). The level of significance accepted
for all statistical analyses was a 5 0.05.

Results

Ten short children received a single iv dose of GHRP-2 and
completed the entire study. All subjects tolerated the infu-
sion of GHRP-2 and all study-related procedures without
apparent adverse effects. As illustrated in Fig. 1, the mean
(6sd) serum GHRP-2 concentration vs. time curve revealed
a multiphasic relationship that was best fit using a biexpo-
nential function. The elimination and distribution rate con-
stants (i.e. a and b, respectively) from the curve fit of the

TABLE 1. Initial GH evaluation for short children in study

Subject no. Age (yr) Sex IGF-I Maximum
GH

1 6 F 49 10.1
2 11 M 160 6.9
3 12 M 129 7.1
4 5 M 34 6.6
5 6 M 24 17
6 4 M 37 12
7 8 M 14 8.2
8 6 M 46 9.5
9 7 M 114 14.9

10 8 M 35 15.3

FIG. 1. Serum concentration vs. time plot for GHRP-2 (closed
squares) and GH (closed circles) after iv administration of GHRP-2.
Data are shown as the mean (6SEM). The generalized serum concen-
tration equation derived from the best fit of the mean data for GHRP-2
was Cpt 5 1.51 3 e21.32 3 t 1 13.11 3 e210.58 3 t, and that for the GH
mean data was Cpt 5 131.62 3 e21.75 3 t 1 158.83 3 e24.97 3 t.
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mean data were 1.32 and 10.58 h21, respectively, which
yielded the following generalized equation that best de-
scribed the mean serum vs. time concentration profile for
GHRP-2: Cptx 5 1.51 3 e21.32 3 tx 1 13.11 3 e210.58 3 tx, where
Cptx represents the plasma concentration of GHRP-2 at any
given time point (i.e. tx). The excursion of serum concentra-
tions ranged from 7.4 6 3.8 to 0.15 6 0.14 ng/mL over a
period of 0.083–2.0 h, respectively, after administration of the
GHRP-2 dose. A curve fit of the mean serum GHRP-2 vs. time
data for all subjects revealed a rapid distribution (a) phase
with a mean distribution half-life (t1⁄2a) of 0.06 h, followed by
a longer terminal elimination half-life (t1⁄2b) with a mean
value of 0.52 h.

The polyexponential parameter estimates for GHRP-2 that
resulted from the curve fits of the serum concentration vs.
time data for each subject were used to calculate relevant
pharmacokinetic parameters, which are contained and sum-
marized in Table 2. In each instance, a biexponential rela-
tionship provided the best fit of the serum concentration
data.

The mean (6sd) serum GH concentration vs. time data
(Fig. 1) also revealed a multiphasic relationship that was best
fit using a biexponential function. The appearance and elim-
ination rate constants (i.e. Kapp and Kel, respectively) from the
curve fit of the mean serum concentration vs. time data were
4.97 and 1.75 h21, respectively, which yielded the following
generalized equation that best described the mean serum
concentration vs. time concentration profile for GH: Cptx 5
131.62 3 e21.75 3 tx 1 158.83 3 e24.97 3 tx, where Cptx repre-
sents the plasma concentration of GH at any given time point
(i.e. tx). The apparent peak serum GH concentration from
these data was 44.8 6 19.0 ng/mL. Serum GH concentrations
declined in an apparent monoexponential fashion after the
attainment of the peak concentration (i.e. Tmax) at approxi-
mately 0.5 h and declined to 4.8 6 7.8 ng/mL 2 h after
GHRP-2 administration. The curve fit of these data (Fig. 1)
revealed a mean first order appearance rate constant (Kapp)
of 4.97 h21 with a corresponding mean appearance t1/2 of
0.14 h, and a mean apparent elimination rate constant (Ke) of
0.39 h21 with a corresponding elimination t1/2 of 0.4 h.

Pharmacokinetic parameters for GH were calculated using
the polyexponential parameters resulting from the curve fits
of serum concentration vs. time data in each subject and are
contained and summarized in Table 3. As was true for the

analysis of GHRP-2 data, a biexponential relationship pro-
vided the best fit of the serum GH concentration vs. time data
for each subject (Fig. 1). Three of the 10 subjects did not have
quantifiable serum GH concentrations at the 2 h posttreat-
ment collection point. This did not influence the determina-
tion of the pharmacokinetic parameters for these subjects, as
each of them had a sufficient number of serum concentration
vs. time points in the elimination phase to produce a reliable
estimate of the apparent terminal elimination rate constant.

Examination of the pharmacokinetic parameters for both
GHRP-2 and GH (Tables 2 and 3, respectively) for apparent
developmental dependence through attempts to correlate
them with patient age revealed no statistically significant
linear or nonlinear relationships. These same findings were
apparent when the pharmacodynamic parameters for
GHRP-2 (Table 4) were examined.

For each subject, the plot of the GHRP-2 serum concen-
tration vs. effect (i.e. DGHt) data produced a counterclock-
wise hysteresis loop, which was consistent with an equili-
bration delay between the appearance of GHRP-2 in serum
and its pharmacological effect (i.e. the stimulation of GH
release and its appearance in serum). This particular phar-
macodynamic relationship was present for all 10 subjects.
Consequently, application of the sigmoid Emax model en-
abled calculation of the pharmacodynamic parameters for
GHRP-2 using GH as the surrogate marker of its pharma-
cological activity. These parameters are summarized in
Table 4.

Discussion

The pharmacokinetics of GHRP-2 found in our cohort of
pediatric patients are similar to those previously reported in
healthy adult volunteers after iv administration of the pep-
tide (3). A comparison of the maximum GH response ob-
served after GHRP-2 administration between these two stud-
ies revealed similarities in both the magnitude (i.e. mean
values 5 44 mg/L in children vs. 55 mg/L in adults) and time
of maximal response (i.e. average values 5 45–60 min for
both). The GH responses observed after iv or sc GHRP-2 are
also similar to those previously reported after the parenteral
administration of GHRP-6, GHRP-1, or GHRH (3, 4, 23, 24).

To our knowledge, our data represent not only the first
report of GHRP-2 pharmacokinetics in pediatric patients, but

TABLE 2. Individual pharmacokinetic parameters for GHRP-2 in short children

Subject no. b (1/h) a (1/h) Cmax (ng/mL) AUC03` (ng/mLzhr) CL (L/hzkg) VDss (L/kg)

1 1.61 10.48 5.34 1.29 0.78 0.32
2 1.65 37.58 9.43 1.75 0.57 0.25
3 1.39 20.70 11.54 2.87 0.35 0.20
4 1.66 7.59 3.26 0.77 1.29 0.41
5 1.59 15.82 5.53 1.10 0.91 0.38
6 1.34 6.30 6.47 1.75 0.57 0.23
7 0.93 6.87 15.17 5.44 0.18 0.128
8 1.08 7.35 4.68 1.54 0.65 0.43
9 0.87 7.21 3.73 1.14 0.87 0.62

10 1.17 13.98 8.56 2.56 0.39 0.25

Mean SD 1.33 6 0.30 13.39 6 9.74 7.37 6 3.79 2.02 6 1.37 0.66 6 0.32 0.32 6 0.14

b, Terminal elimination rate constant; a, distribution rate constant; Cmax, apparent peak serum concentration; AUC03`, area under the
serum concentration vs. time curve from time zero extrapolated to infinity; CL, total serum clearance; VDss, apparent steady state volume of
distribution.
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also the first pharmacodynamic assessment of this peptide.
Comparison of the serum concentration vs. time profiles for
both GHRP-2 and GH in our subjects reveals an equilibration
delay in the attainment of peak GH response, a period that
we believe corresponds to the time course of GHRP-2 action.
This assertion is supported in part by the consistent obser-
vation of an equilibration delay between the serum concen-
trations of GHRP-2 vs. effect (i.e. DGHt) curves, reflected by
the production of a counterclockwise hysteresis and our suc-
cess in using the sigmoid Emax model to effectively determine
the pharmacodynamic parameters for GHRP-2. As previ-
ously reported by Holdford and Sheiner (22), the successful
application of this pharmacodynamic model suggests both
linearity and predictability in the drug concentration vs. ef-
fect relationship. Given the fact that GH is a proximate bi-
ological marker of GHRP (and presumably, GHRP-2) activity
(23, 24), our assumptions entailed in the pharmacodynamic
analysis of our data appear valid and reflective of the ex-
pected pharmacological response of GHRP-2.

Despite the apparent differences in serum GH pharmaco-
kinetics reported after exogenous administration of the
hormone (25) as opposed to the administration of GH secre-
tagogues (26–30), both the pharmacokinetic and pharmaco-
dynamic data from our study can be used to address the
potential therapeutic efficacy of GHRP-2 in pediatric patients
with GH insufficiency. First, the mean AUC for GH after the
iv administration of a single 1 mg/kg dose of GHRP-2

(i.e. 50.7 ng/mLzh) was approximately 50% of the AUC at
steady state (i.e. 114.2 6 32.7 ng/mLzh) previously reported
in a study of pediatric patients who received daily sc doses
of 43 mg/kg methionyl GH (25). If one assumes linearity in
the dose-response relationship for iv GHRP-2, administra-
tion of a single 2 mg/kg iv dose would be expected to produce
an AUC for GH that would be virtually identical to that
observed under steady state conditions after sc administra-
tion of the currently recommended daily doses of recombi-
nant human GH (25), doses that have been shown to produce
acceptable rates of linear growth in children who are GH
deficient (30). Second, both the Cmax (mean, 50.7 ng/mL) and
Emax values for GHRP-2 in our patient cohort (mean GH, 67.5
ng/mL) actually exceeded the average Cmax values for GH
(37.6 6 11.6 ng/mL; range, 17.6–49.5 ng/mL) after a single
sc dose of 0.1 mg/kg methionyl GH to GH-deficient children
(25). Finally, the EC50 for GHRP-2 in our study cohort (1.1 6
0.6 ng/mL) was substantially less than the Cmax value (7.4 6
3.8 ng/mL). This particular finding not only supports the
adequacy of the 1 mg/kg iv dose of GHRP-2 in producing a
desirable biological effect, but also suggests that extravas-
cular administration of this peptide by a route that could be
associated with up to a 50% reduction in bioavailability may
still produce an acceptable increase in the serum GH con-
centration sufficient to initiate and sustain a desired growth
response. This hypothesis is being tested by our group in

TABLE 3. Individual pharmacokinetic parameters for GH in short children after iv administration of GHRP-2

Subject no. Kel (1/h) Kapp (1/h) Tmax (h) Cmax (ng/mL) AUC03` (ng/mL z h) MRT (h)

1 1.28 11.55 0.33 40.85 43.24 0.90
2 2.10 4.95 0.33 32.45 28.17 0.73
3 2.04 4.33 0.50 93.41 76.07 0.81
4 3.15 5.78 0.33 37.33 23.95 0.54
5 2.89 3.46 0.50 47.00 37.65 0.69
6 2.04 4.33 0.50 43.85 30.10 0.80
7 1.54 4.95 0.50 50.90 60.53 0.91
8 1.17 1.58 0.75 57.95 102.61 1.52
9 4.62 8.66 0.17 44.34 21.22 0.39

10 1.41 9.90 0.33 58.94 55.71 0.86

Mean SD 2.22 6 1.07 5.95 6 3.11 0.42 6 0.16 50.70 6 17.17 47.92 6 26.1 0.82 6 0.30

Kel, Terminal elimination rate constant; Kapp, appearance rate constant; Tmax, apparent time of peak serum concentration; Cmax, apparent
peak serum concentration; AUC03`, area under the serum concentration vs. time curve from time zero extrapolated to infinity; MRT, mean
residence time.

TABLE 4. Individual pharmacodynamic parameters for GHRP-2 in short children

Subject no. Keo (1/h) E0 (ng/mL) Y EC50 (ng/mL) Emax (ng/mL)

1 1.49 2.35 6.73 0.81 40.07
2 0.26 5.92 27.21 0.97 93.73
3 0.56 7.90 27.09 1.31 105.00
4 1.54 1.30 4.33 0.66 48.00
5 0.61 2.07 7.22 0.64 92.16
6 0.58 6.89 24.13 0.76 54.70
7 1.10 9.34 12.76 2.39 40.18
8 0.39 18.05 12.03 0.41 72.40
9 3.47 4.71 4.21 1.24 55.40

10 1.32 7.81 5.75 1.71 73.6

Mean SD 1.13 6 0.94 6.63 6 4.86 13.15 6 9.44 1.09 6 0.59 67.52 6 23.46

Keo, First order effect equilibrium rate constant; E0, serum GH concentration associated with no effect from GHRP-2; Y, slope factor of
sigmoidicity for concentration vs. effect relationship; EC50, serum GHRP-2 concentration associated with 50% response as measured by
posttreatment increase in serum GH concentrations; Emax, maximum attainable serum GH concentration after GHRP-2 administration derived
from the pharmacokinetic-pharmacodynamic link model.
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dose-ranging studies of oral and intranasal GHRP-2 that are
currently underway.

In conclusion, both the pharmacokinetics and pharmaco-
dynamics of iv administered GHRP-2 in short children are
predictable and reflective of the potential for therapeutic
application of this peptide. The data produced in this inves-
tigation will enable the selection of GHRP-2 doses for future
evaluation of their bioavailability, safety, tolerance, and ef-
ficacy in children.
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