A Novel Mixed Living High Training Low Intervention and the Hematological Module of the Athlete Biological Passport

A Novel Mixed Living High Training Low Intervention and the Hematological Module of the Athlete Biological Passport / Sven Christian Voss, Khalifa Al‐Hamad, Waseem Samsam, Anissa Cherif, Costas Georgakopoulos, Mohammed Al Maadheed, George Balanos, Sam Lucas, Pierre‐Edouard Sottas, Mathew Wilson, Nathan Townsend. - (Drug Testing and Analysis (2019) 30 December; p. 1-8).
- PMID: 31889433.
- DOI: 10.1002/dta.2723


Exposure to either natural or simulated hypoxia induces hematological adaptations that may affect the parameters of the Athlete Biological Passport (ABP). The aim of the present study was to examine the effect of a novel, mixed hypoxic dose protocol on the likelihood of producing an atypical ABP finding. Ten well‐trained middle‐distance runners participated in a “live high, train low and high” (LHTLH) altitude training camp for 14 days. The participants spent ˜6 hr.d‐1 at 3000–5400 m during waking hours and ˜10 h.d‐1 overnight at 2400–3000 m simulated altitude. Venous blood samples were collected before (B0), and after 1 (D1), 4 (D4), 7 (D7), and 14 (D14) days of hypoxic exposure, and again 14 days post exposure (P14). Samples were analyzed for key parameters of the ABP including reticulocyte percentage (Ret%), hemoglobin concentration ([Hb]), and the OFF‐score. The ABP adaptive model was administered at a specificity of 99% to test for atypical findings. We found significant changes in [Hb] and Ret% during the hypoxic intervention. Consequently, this led to ABP threshold deviations at 99% specificity in three participants. Only one of these was flagged as an “atypical passport finding” (ATPF) due to deviation of the OFF‐score. When this sample was evaluated by ABP experts it was considered “normal”. In conclusion, it is highly unlikely that the present hypoxic exposure protocol would have led to a citation for a doping violation according to WADA guidelines.


Research / Study
30 December 2019
Al-Hamad, Khalifa
Al-Maadheed, Mohammed
Balanos, George
Cherif, Anissa
Georgakopoulos, Costas G.
Lucas, Sam
Samsam, Waseem
Sottas, Pierre-Edouard
Townsend, Nathan
Voss, Sven Christian
Wilson, Mathew
United Kingdom
Other organisations
Qatar Orthopaedic & Sports Medicine Hospital (QOSMH)
University of Birmingham
Doha, Qatar: Antidoping Lab Qatar, Doping Analysis Lab
Analytical aspects
Atypical Finding (ATF)
Athlete Biological Passport (ABP)
High altitude training
Document category
Document type
Pdf file
Date generated
14 January 2020
Date of last modification
17 January 2020
  • Legal Source
  • Education
  • Science
  • Statistics
  • History
Country & language
  • Country
  • Language
Other filters
  • ADRV
  • Legal Terms
  • Sport/IFs
  • Other organisations
  • Laboratories
  • Analytical aspects
  • Doping classes
  • Substances
  • Medical terms
  • Various
  • Version
  • Document category
  • Document type
Publication period